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Abstract
Purpose of Review Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of tradi-
tional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last
decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated
into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in
CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive
carotid ultrasonography.
Recent Findings In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and
image-based (or integratedML-based). The success of conventional (non-image-based)ML-based algorithms lies in the different
data-driven patterns or features which are used to train the ML systems. Typically these features are the patients’ demographics,
serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features
derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in
ML frameworks.
Summary Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of
the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of
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image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii)
the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as
ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.

Keywords Atherosclerosis . Carotid artery . Coronary artery . Stroke risk . Cardiovascular risk . Machine learning . Deep
learning . Conventional systems . Integrated systems

Introduction

In 2017, cardiovascular diseases (CVD) such as heart attack
and stroke killed 17.9 million people (31% of global mortal-
ity) around the world [1]. Plaque buildup in carotid and coro-
nary arteries (also called as atherosclerotic disease, see Fig. 1)
is one of the major cause of such mortalities. Recent findings
indicate that traditional risk factors including ethnicity, age,
hyperlipidemia, hypertension, diabetes mellitus, smoking,
family history of coronary artery diseases, obesity, and phys-
ical inactivity are responsible for a majority of cardiovascular
(CV) mortalities [2, 3•, 4]. Optimal management of CVD
requires the following: (i) the in-depth understanding of vari-
ous CV risk factors that are associated with the disease; (ii)
early prediction of the CVD/stroke risk; and (iii) the initiation
of preventive methods such as usage of statins to treat the
disease prior to the occurrence of the vascular events.

In the last decade, various efforts weremade for the optimal
management of CVD/stroke by developing computational
risk prediction models [5–15]. All such clinically well-
established risk prediction models provide long-term risk pre-
diction by taking into consideration the traditional and non-

traditional CV risk factors to create a tool for primary preven-
tion. However, the majority of these risks prediction models
are not generalizable due to specific cohort characteristics
fromwhich they were derived. As a result, these models either
underestimate or overestimate the CVD risk when applied to a
cohort with a different baseline risk profile [16–18]. Another
important fact about traditional risk scores is that they do not
incorporate the morphological variations of the atherosclerotic
plaque detectable during imaging tests. Such image-based da-
ta is increasingly being recognized as a key biomarker respon-
sible for the onset of the stroke or CVevents [19–21].

Recent advancements in imaging techniques have facilitat-
ed a clear visualization of the atherosclerotic plaque morphol-
ogy and the measurement of several image-based phenotypes.
The visualization can be in different shapes and sizes depend-
ing upon the nature of imaging (cross-sectional vs. longitudi-
nal). For example, imaging coronary artery using intravascular
ultrasound (IVUS) provides the cross-sectional images of
plaque morphology, while imaging carotid artery using B-
mode ultrasound provides longitudinal images of plaque mor-
phology. In general, some commonly used image-based phe-
notypes are based on (i) wall area (using B-mode ultrasound)

Fig. 1 General schematic
diagram depicting the role of non-
invasive carotid ultrasound and
intravascular ultrasound in the
detection of vascular
atherosclerosis (Courtesy of
AtheroPoint™, Roseville, CA,
USA and Reproduced with
permission from Elsevier)
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and volume of calcium (using IVUS) [22, 23], (ii) thickness of
microstructural high-risk atherosclerotic plaque components
such as thin-capped fibroatheroma (using intravascular optical
coherence tomography) [24, 25], (iii) coronary artery calcium
scores (using cardiac computed tomography or CT) [26], (iv)
identification of calcified and non-calcified plaques using cor-
onary computed tomography [27], and (v) carotid image fea-
tures which include carotid intima-media thickness (cIMT),
carotid plaque (CP) area [28, 29], wall variability [30], and
composite risk scores [31]. In this review, we will focus on the
carotid and coronary ultrasound image-based risk factors
using advanced machine learning (ML) algorithms.

Carotid arteries are considered to be a surrogate indicator of
CVD risk. This is because both carotid and coronary arteries
have a similar genetic makeup, and both can be affected by the
atherosclerotic plaque buildup in their vascular beds as
depicted in Fig. 1. In the last two decades, the use of B-
mode carotid ultrasound imaging modality for the assessment
of atherosclerotic vascular diseases has gained popularity due
to its non-invasive, ergonomic, and economic nature [32–38].
cIMT and CP extracted from B-mode carotid ultrasound im-
ages are considered to be the two most vital image-based risk
factors of myocardial infarction and stroke events [19, 20,
39–41]. Several longitudinal studies have reported the use of
cIMT and CP for the prevention of vascular disease [33–37].
This has resulted in the framing of guidelines that report the
use of cIMTand CP for the CVD risk assessment [28, 42–44].
Carotid ultrasound image-based phenotypes are also associat-
ed with conventional cardiovascular risk factors (CCVRF)
such as age, increased blood pressure, hyperlipidemia, diabe-
tes mellitus, smoking, and body mass index. Nambi et al. [28]
reported an improvement in the CVD risk prediction when
both the cIMT and CP were taken into consideration along
with the traditional risk factors. Thus, scanning the carotid
arteries using non-invasive B-mode ultrasound can improve
CVD and stroke risk assessment.

At present, more than 100 CVD risk prediction models are
available but the selection of the most suitable risk prediction
model is still being debated [45]. The majority of the conven-
tional risk prediction models are based on traditional statistical
methods such as multivariate linear regression, logistic regres-
sion, and Cox regression models [5, 9, 12, 13, 46]. Such
methods allow the inclusion of a small number of risk factors
(or covariates) in the risk model. Furthermore, all such models
are good at indicating an association of risk predictors with
CVD [5, 9, 12, 13, 46]. However, in the case of CVor stroke
event prediction, they provide little generalizable benefit [47]
because the statistically derived risk prediction models are
based on the cohort characteristics which may vary from one
cohort to another. Furthermore, local patterns in the clinical,
demographics-based, and traditional risk factors from differ-
ent cohorts are prone to noise (such as data fluctuations or
missing values or sudden large deviations) and biases which

are not accurately captured by such risk predicting models
[47]. Lastly, the missing piece of the model is the exclusion
of image-based morphological characteristics. This makes the
overall risk evaluation systems weak and unreliable. Thus, in
order to provide accurate and reliable CVD/stroke risk predic-
tion, it is essential to look beyond the scope of traditional
statistically derived risk calculators [47].

Innovations in intelligence-basedparadigmssuchasMLand
deep learning (DL) have performed exceptionally well in al-
most all medical domains [48–52]. The roots of ML systems
lie in big data analytics. The term big data indicates the large
storage of datasets with multiple clinical demographics (taken
at the same time such as coronary, carotid, renal, etc.) collected
frommultiplesources. InFig.2,bigdatahasbeenrepresentedas
a collection of data-driven risk factors from multiple sources
that include the patients’ demographics, conventional risk fac-
tors such as diabetesmellitus, hyperlipidemia, smoking, hyper-
tension, and the image-based phenotypes. Machine learning
algorithms can make use of all these stored data and try to ana-
lyze different patterns that represent the data.MLsystems learn
to recognize the different patterns in the dataset and produce
CVD and stroke prevention prediction models. ML-based
models follow the data-driven approach, meaning that these
models automatically learn their coefficients from the different
global and local patterns available in the big data which may
vary among different population cohorts. In recent years, stud-
ies have shown the potential of various ML techniques in CV
and stroke risk prediction [53, 54••]. Similarly, ML algorithms
have also been adopted for stroke risk assessment by character-
izing carotid atherosclerotic plaques tissues from the B-mode
ultrasound images [55, 56, 57•, 58•, 59, 60]. In comparison to
traditional risk calculators, recent findings indicate better per-
formance of ML techniques for accurate CVD risk estimation
[54••]. Kakadiaris et al. [61••] recently published a 13-year fol-
low-up study to show that an ML-based risk calculator
outperformed the well-established pooled cohort risk score
(PCRS),a riskcalculatorwhich isbasedonthe recentguidelines
of American Heart Association and American College of
Cardiology (also called as ACC/AHA risk score or atheroscle-
rosis CVD risk score).

The breakthrough results presented by Weng et al. [54••]
and Kakadiaris et al. [61••] have started a new quest to com-
pare the automated ML (also broadly referred to as artificial
intelligence) risk prediction models to well-established con-
ventional risk calculators. Motivated by these results, this re-
view provides a more informative understanding of the differ-
ent ML techniques and various other approaches utilized for
CVD and stroke risk prediction. The main focus of this review
is to investigate the various ML-based systems used for CVD/
stroke risk assessment in particular to carotid and coronary
atherosclerosis diseases and more specifically using ultraso-
nography. Furthermore, the role of different conventional and
image-based features has also been discussed in this review.
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Article Search Strategy

This review is the outcome of rigorous searches on PubMed,
Cochrane Library, and Web of Science to obtain the articles
which were published in high impact factor peer-reviewed
journals. We took a search window spanning the most recent
10 years for selecting the matching publications for this re-
view. The keywords used for searching articles in the most
recent 10 years were as follows: “Cardiovascular Risk
Assessment,” “Stroke Risk Assessment,” “10-year CVD risk
calculator,” “Machine learning-based CVD risk calculator,”
“carotid ultrasound-based stroke risk,” “automated CVD risk
estimation,” “carotid atherosclerotic plaque and machine learn-
ing,” “coronary atherosclerotic risk assessment.” Furthermore,
a list of references from shortlisted research publications was
also shortlisted for this review. Topics discussed in this
article were initially discussed with experts in the field of car-
diology, neurology, biomedical imaging, computer science,
and artificial intelligence covering ML- and DL-based risk
assessment.

Risk Assessment Using Traditional Methods

Traditional methods of CVD and stroke risk assessment are
based upon the statistically derived risk calculators [5–7, 14,
62–66]. Nearly all of these conventional risk prediction
models provide the risk estimation based on conventional re-
gression techniques [67]. For example, the well-established
Framingham Risk Score (FRS) [5], the United Kingdom
Prospective Diabetes Study (UKPDS56) [14], the Reynolds
Risk Score (RRS) [9], the NIPPON score [14], and the Pooled
Cohort Risk Score [6] were all developed by using a Cox
regression model (i.e., a proportional hazard model).
Similarly, the Systematic Coronary Risk Evaluation
(SCORE) calculator adapted the Weibull regression model
[7]. As discussed in the “Introduction” section, such statistical
models are well suited when the application is to find the
association between risk predictors (so-called risk factors or

covariates) and the outcome of interest. Recently, Goldstein
et al. [47] pointed out three major challenges associated with
these regression-based risk prediction models. (i) These
models do not represent the true non-linear relationships be-
tween risk predictors and the outcome of interest. This means
the regression-based models assume the predictor is linearly
associated with the clinical outcome. (ii) The risk predictors
are sometimes inter-dependent on each other. Thus, their ef-
fect on the outcome may not truly be captured by such
regression-based models. (iii) When the number of risk pre-
dictors obtained from the dataset is large, then it becomes
difficult to decide which risk factors to include in the
regression-based models. This may be because of the small
but significant associations between some of the risk predic-
tors and the outcome of interest, which may otherwise make
the model unstable. More research is required to understand
and validate these calculators and further to explain their be-
haviors with the diverse risk factors. Before we dwell into
ML-based CVD/Stroke risk calculators, wewill briefly review
ML fundamentals and the architectures.

Fundamentals of Machine Learning

Types of Machine Learning Techniques

Primarily, ML-based models are divided into three categories
(Fig. 2, labeled as “Learning methods”): (i) Supervised learn-
ing and (ii) Unsupervised learning, and (iii) Reinforcement
learning. In Supervised learning, the predefined binary labels
(high-risk or low-risk; event or non-event) are obtained from
the physicians or from the longitudinal trials as inputs that are
used to train the ML system on how to correctly predict the
risk outcome. For example, an automated cardiovascular
event prediction system is usually provided with predefined
labels corresponding to an event or no-event category [53, 68].
In risk assessment systems, the input labels (or response var-
iable) can be obtained from the expert physicians or from
results of the longitudinal follow-up studies, or by designing
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Fig. 2 Machine learning and deep
learning system framework using
big data
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a response variable using a combination of risk factors. The
Unsupervised learning ML system performs risk stratification
without any prior user inputs or labels by identifying and then
clustering similar local patterns from the source data [69].
Once trained, each of the clusters corresponds to the one out-
put category; for instance, in the above example, the output
clusters can either be an event or no-event category.
Reinforcement learning is another ML technique which pro-
vides its predictions based on rewards. Reinforcement learn-
ing is widely adapted in gaming and robotic applications [70].
This review is focused on the supervised ML-based algo-
rithms used in CVD/stroke risk assessment adapting
ultrasonography.

General Framework of Machine Learning

Machine learning combines the knowledge of computer sci-
ence and mathematical and statistical models to self-train the
systems to provide the desired outcome. The outcome can be
the prediction of absolute real numbers or it can be a classifi-
cation of the input data into the set of desired output classes.
Figure 3 shows the generalized ML-based framework that is
divided into five stages and discussed below in brief in the
following order: (i) feature engineering, (ii) data partitioning,
(iii) model building (or offline system), (iv) prediction (or
online system), and (v) performance evaluation.

Feature Engineering: Extraction and Selection

Feature engineering is the most crucial part of any ML-based
system that helps in interpreting the input dataset. In CVD/

stroke risk assessment, these features can be either CCVRFs
such as patients’ demographics, serum biomarkers, and clini-
cal variable or image-based phenotypes such as grayscale fea-
tures [59, 71, 72], texture-based features [73], discrete wavelet
transformed-based features [74], Riesz-based features [75],
higher order spectra (HOS)-based features [76, 77], fractal
features, and local binary patterns [78]. Quantitative carotid
wall-based features extracted from B-mode ultrasound images
such as cIMT and CP are also considered to be reliable for
CVD/stroke risk assessment. According to the consensus re-
port of the American Society of Echocardiography, cIMT
measurements are generally performed in 1 cm region of com-
mon carotid artery at a proximal distance of 1 cm from the
bulb [42]. However, studies have shown that measuring the
distance between lumen-intima (LI) and media-adventitia
(MA) throughout the length of the carotid artery including
CP thickness provides an additional benefit in the risk assess-
ment [79, 80]. AtheroEdge™ (AtheroPoint™, Roseville, CA,
USA) has exclusively published and established a system
which can measure fully and automatically cIMT throughout
the carotid artery in just a few seconds [81]. The system out-
puts image-based phenotypes include average cIMT
(cIMTave), maximum cIMT (cIMTmax), minimum cIMT
(cIMTmin), variability in cIMT (cIMTV), and morphologic
total plaque area (mTPA). The system underwent inter- and
intra-operator variability analysis recently [82–84]. Under
wall-based features, one can also measure lumen diameter
(LD) [84], stenosis severity index (SSI) [85, 86], and inter-
adventitial diameter (IAD) [87]. Excellent inter- and intra-
operator variability for LD and IAD was recently shown in
the AtheroEdge™ model (deep learning for LD) [88].
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The CCVRFs and image-based phenotypes provide a de-
tailed understanding of the severity of CVD/stroke disease
and can be used to train the ML-based systems. Recently,
Khanna et al. [89] presented a study that estimated the 10-
year CUS image-based phenotypes by integrating the five
types current image-based phenotypes (cIMTave, cIMTmax,
cIMTmin, IMTV, mTPA) with conventional risk factors. Such
10-year features can also be used in the ML-based system to
provide CVD/stroke risk stratification.

Besides feature extraction, dominant feature selection is
another important technique that captures the most relevant
features and then trains the ML systems. However, feature
selection can only benefit the ML system if a large number
of features are captured from the input data. Some commonly
used feature selection methods are random forest, logistic re-
gression, mutual information, principal component analysis,
analysis of variance, and Fisher discriminant ratio [90, 91].

Data Partitioning

Data partitioning involves dividing the input data set into two
parts: (a) training dataset and (b) testing dataset. Multiple pro-
tocols exist for performing this data partitioning task. The
most common protocol is 10-fold cross-validation, where the
input dataset set is divided into ten equal parts, and at any
time, nine parts are used for training the ML-based system
while the remaining one part is used for validating the predic-
tions of the system. This is also termed as K10 protocol where
10 indicate the number of total partitions designed duringML-
based training model (typically using 80% of the dataset for
training). The similar well-known data partitioning protocols
are K2 protocol, K3 protocol, K4 protocol, and Jack Knife
(also called as leave-one-out) cross-validation protocols, de-
pending upon the percentage of data used for training as 50,
66, 75, and 99%, respectively. Since in a leave-one-out cross-
validation protocol, N-1 samples are used for training and one
sample is used for testing, it is generally adopted when the
sample size is relatively small [92].

Training Model Design

Training model design involves teaching the ML-based algo-
rithm to learn from the input training features over several
iterations. Since this review is focused on supervised ML sys-
tems, predefined ground truth labels are required during the
training phase, which in turn generates the offline coefficients.
During each of the training iteration, ML-based algorithms
provide the output predictions and compute the probable loss
(also called an error) by comparing against the supplied labels
(response variable). Based on the loss value, the internal co-
efficients of the model (so-called as hyperparameters) are ad-
justed. After updating the hyperparameters, ML-based algo-
rithms will be again trained on the input features. The process

of updating hyperparameters continues until the loss is mini-
mum (we also call this instance, when the machine is able to
split or partition well and the plane of separation is the hyper-
plane). This is so-called a state in which the ML model is
considered to be trained.

Prediction or Testing Model

In the prediction or testing phase, the optimized coefficients
from the trained model (training parameters) are used to trans-
form the test features (derived from the test data) into the
output or predicted class. This is also called an online process
since this model accepts training parameters from the offline
system and transforms the test features from the online sys-
tem. In cross-validation protocols, the test data is a dataset
completely different from the training data. Typically a good
artificial intelligence model in risk stratification is a one which
trains the machine only one time while the predictions can be
done on several types of test data sets. More sophisticated
machines are required to train and test on different types of
datasets.

Performance Evaluation of Machine Learning Systems

Performance evaluation (PE) metrics are generally used to test
the ability of ML systems to accurately predict the risk cate-
gories of patients [93]. In the PE model, the predicted class
labels of the test patient are computed using the prediction
model and compared against the corresponding ground truth
label, which is then used by the performance evaluation met-
ric. The choice of a PE metric is of utmost importance because
it indicates the degree to which the trained and tested model is
accomplishing the desired outcomes. Area-under-the-curve
(AUC) derived from receiver operating characteristic analysis
is a widely adopted PE metric in medical applications. It indi-
cates the overall performance of the system in terms of sensi-
tivity and specificity (see Appendix). Besides the classifica-
tion accuracy, Brier score [94] and concordance index [95] are
commonly used PE metrics in CV risk assessment [12, 53,
96].

ML-Based Algorithms

In general, classification and regression are the two primary
tasks in ML-based algorithms. Almost all the ML-based algo-
rithms are capable of performing both of these two tasks.
Classification basically categorizes the input data into one of
the predefined labels or outcomes. For example, in a CVD/
stroke event prediction task, the input features are generally
classified into either “Event” or “No-Event” category.
Regression-based ML algorithms are generally used for pre-
dictions of some real-valued output. For example, in a CVD/
stroke risk estimation task, regression-based ML algorithms
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provide the real-valued percentage risk between 0 and 100%.
This review is mainly focused on the ML-based application
consisting of classification task. The most common ML algo-
rithms used in CVD risk assessment are support vector ma-
chine (SVM) [97], artificial neural networks (ANN) [98], lin-
ear and logistic regression [54••], and tree-based algorithms
such as random forest (RF) and decision tree (DT) [54••].
Another category of ML is ensemble learning techniques, in
which the outcomes of all ML techniques can be combined to
train the MLmodel to increase the accuracy of risk prediction.
In Tables 1, 2, and 3, we have compared multiple studies
presented onML-based CVD/stroke risk assessment. One im-
portant observation is that most of the studies have utilized the
SVM as a classifier during training and testing of classifica-
tion tasks.

Risk Assessment in Machine Learning
Framework

In last decade, various efforts were made to perform the ML-
based CV risk stratification using imaging modalities such as
carotid CT [74], coronary CT angiography [107], single pho-
ton emission CT (SPECT) [108], echocardiography [71, 109],
magnetic resonance imaging [110], and optical coherence to-
mography [25]. However, since this review is largely focused
on the ML-based CV risk stratification using ultrasound im-
aging, the discussion on other imaging modalities is consid-
ered to be out-of-scope for this review. This section covers
various efforts made in the direction of ML-based CV risk
stratification using ultrasound imaging (of both coronary and
carotid arteries).

Image-Based Stroke Risk Assessment Using Machine
Learning

Deposition of atherosclerotic plaque leading to restriction of
blood flow in the carotid and coronary arteries leads to cere-
brovascular (ischemic stroke) and cardiovascular (myocardial
infarction) events [111, 112]. In recent years, ML-based algo-
rithms have been widely adopted for stroke risk assessment
using non-invasive imaging modalities such as carotid ultra-
sound [56, 57•, 58•, 59, 60]. Carotid atherosclerotic plaque
burden is a crucial biomarker for stroke events and can be
readily assessed using imaging tests [20, 113]. The appearance
of CP in the B-mode ultrasound image (brighter/hyperechoic/
echogenic or darker/hypoechoic/echolucent) adds valuable in-
formation about the risk profile of a patient [114]. It has been
shown that echolucent (darker) atherosclerotic plaque (darker
plaque) is a potential indicator for stroke events [115, 116]. It
has also been shown that the effect of this echolucent plaque is
more pronounced in patients with diabetes [117]. Similarly,
echogenic (brighter) plaque due to the presence of calcium

within a plaque [118, 119] may be a marker of less
vulnerable/low-risk plaque compared to the echolucent
plaque. Identification of both of these plaque phenotypes is a
crucial step in stroke risk assessment and can possibly be
useful in treatments of stenting or endarterectomy [55, 56,
60, 120]. This decision is clearly a classification task, for
which the ML-based systems are well suited. In the last de-
cade, multiple efforts were made to automatically classify CP
phenotypes [55, 56, 57•, 60].

In 2010, Acharya et al. [55] presented a study that classified
carotid atherosclerotic plaque using the supervised ML-based
algorithm such as SVM and AdaBoost classifier. Texture pat-
terns captured using carotid ultrasound images along with the
statistical features (mean and standard deviation) were used to
train theseML systems. Authors reported 82.4% classification
accuracy using SVM-based classifier. In 2013, the same group
(Acharya et al. [56]) again classified CP phenotypes by con-
sidering the combination of discrete wavelet transform
(DWT), HOS, and texture features. With the addition of both
the DWT and HOS features, classification accuracy increased
to 91.7%. Other similar studies of stroke risk assessment using
carotid plaque phenotypes in ML-based algorithms are pre-
sented in Tables 1, 2, and 3.

Cardiovascular Diseases Risk Assessment Using
Machine Learning

In the last few years, ML-based algorithms have widely pene-
trated into the domain of primary CVD risk assessment, partic-
ularly in (i) coronary artery disease using characterization of
coronary atherosclerotic plaque tissues, (ii) CVD risk using
coronary calcium score, (iii) coronary artery disease based on
conventional risk factors, (iv) overall CVD risk, and (v) predic-
tion of CVevents. Risk assessment using ML in each of these
different applications requires the data-specific patterns to train
the ML model, and then to transform the trained knowledge to
predict the risk on the test data. These patterns can be derived
from the CCVRFs, serum biomarkers, patients’ demographics,
imaging modalities or from the combination of these. In the last
decade, multiple studies have explored the potential advantages
of using different combinations of features for ML-based car-
diovascular risk assessment [53, 71, 73, 92].

Using IVUS coronary imaging modality, Araki et al. [92]
demonstrated the CAD risk stratification of 15 Japanese pa-
tients using 56 grayscale features. The IVUS image-based
gray features were captured from the region between inner
elastic lamina and external elastic lamina of the coronary wall.
The IVUS examinations scanned the coronary arteries includ-
ing the left and right anterior descending, left circumflex, and
left main coronary artery. Overall, when using the SVM-based
classifier, the ML classification accuracy for this automated
system was 94.95%. This improvement is likely due to inclu-
sion of the following: (i) more dominant features along with
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feature selection methods such as principal component analy-
sis (PCA) or Fisher discriminant analysis; and (ii) plaque mo-
tion analysis. Banchhor et al. [73] recently extended Araki’s
[92] work to include coronary wall parameters. In total, 65
carotid and coronary wall-based features were used to perform
the ML-based coronary artery disease risk assessment. Using
the PCA-based features selection approach in conjunction
with an SVM-based classifier, the authors reported a classifi-
cation accuracy of 91.28% with AUC of 0.91. Both of these
studies (Araki et al. [92] and Banchhor et al. [73]) indicated
the link between coronary and carotid atherosclerosis by con-
sidering the cIMT and plaque burden as the gold standard to
perform the supervised CVD risk stratification.

Risk assessment based on longitudinal trials or follow-up
studies is generally considered to be accurate and widely
adopted in clinical practice. Proportional hazard models and
risk calculators are the conventional tools for CVD risk as-
sessment [5–14]. However, a very recently published study by
Ambale-Venkatesh et al. [53] demonstrated that theML-based
algorithms are more accurate and better compared to tradition-
al proportional hazard models for CVD risk assessment.
Authors included the participants from the well-known
Multi-Ethnic Study for Atherosclerosis (MESA), a 12-year
longitudinal cohort study. A total of 735 CV risk predictors
or features were extracted from diverse sources such as pa-
tients’ demographics, traditional risk factors, imaging modal-
ities, questionnaires, and laboratory biomarkers. Authors re-
ported an overall C-index of 0.81 and a Brier score of 0.083
using the random forest-based classifier. The authors also
benchmarked their results against the traditional CV risk as-
sessment tools such as FRS and PCRS. Compared to these
traditional risk scores, authors indicated in an improvement C-
index by ~ 10% and decreased in Brier score by 10–25%.

Weng et al. [54] also presented a prospective study with
378,256 participants and reported better risk stratification
using ML-based algorithms over the conventional statistically
derived risk calculators. A total of 30 CCVRFs were used for
training the ML-based algorithms. Authors compared the per-
formance of four ML-based algorithms such as ANN, random
forest, gradient boosting machine, and logistic regression. The
study reported ANN to be the best classifier with an AUC of
0.76.

Kakadiaris et al. [61] reported the most recent study based
onMESA participants that reported a superior performance of
ML-based system compared to the PCRS-based calculator.
The PCRS calculator was based on ACC/AHA guidelines that
recommended the lipid-lowering statins to the patients whose
risk was more than 7.5% to reduce the risk of ASCVD.
Kakadiaris et al. [61] used the same PCRS but the statin eli-
gibility threshold was chosen as 9.75%. This was mainly be-
cause of the 13-year follow-up nature of the MESA study,
while the PCRS was based on 10-year follow-up dataset.
The authors used the same nine CCVRFs that was used forTa
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PCRS computation and demonstrated the better performance
of ML-based SVM classifier (AUC = 0.92) compared to
PCRS (AUC = 0.71). In this review, we have investigated
some more studies that adapted ML-based algorithms for
CVD risk assessment. A summary of all such studies along
with their attributes is presented in Tables 1, 2, and 3.

CVD/Stroke Risk Assessment Indices

Some investigators have recommended the use of the single
index that quantifies the CVD/stroke risk [55, 56, 60, 71, 74,
121]. Acharya et al. [71] recommend the use of the single
discriminative index called HeartIndex for assessing the risk
of coronary artery disease (CAD). TheHeartIndexwas derived
from the features to classify the echocardiography images into
two risk classes: normal and CAD. In order to assess neurolog-
ical risk, Pedro et al. [121] proposed the enhanced activity index
(EID) that was based on the carotid artery plaque morphology
and severity of carotid stenosis to classify the occurrence of
ipsilateral ischemic symptoms. Acharya et al. [74] proposed
the single values Atheromatic™ index (from AtheroPoint™,
Roseville, CA, USA) to identify two CP phenotypes: high vs.
low risk. The design of the Atheromatic™ index was based on
the computed tomography image phenotypes which were de-
rived from local binary patterns, wavelet transform, and the
textures of the CP image. The same group [55] also proposed
a Symptomatic Asymptomatic Carotid Index (SACI) based on
the texture and statistical features derived from the carotid ul-
trasound image. The SACI index has also been tested in a ca-
rotid atherosclerotic plaque ultrasound-based tissue characteri-
zation study by computing the grayscale features in ML frame-
work [56].

Medical Implications of Machine
Learning-Based Risk Assessment

Risk assessment systems are primarily aimed at identifying the
risk profiles of patients and to stratify them into one of the
several CVD risk classes (e.g., low-risk, moderate-risk, and
high-risk classes). Risk stratification tools decide the need and
strength of statins (i.e., the well-known lipid-lowering medica-
tions) such as atorvastatin, pravastatin, and simvastatin [122]
and diabetes-controlling medications such as metformin [123].

Traditional statistically derived risk prediction models have
been reported to either underestimate or overestimate the
CVD risk [17, 18] and therefore have the unintended conse-
quence of inappropriate medication prescription in some pa-
tients and inappropriate under-utilization in other patients,
both of which have potential harmful side effects and out-
comes. This also could increase the economic burden on the
patients and healthcare systems. ML systems provide better
risk assessment and supports in avoiding unnecessary over orTa
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under treatment [54••]. A recent follow-up study presented by
Kakadiaris et al. [61••] investigated the statin eligibility for the
patients using both (i) PCRS calculator based on ACC/AHA
risk prediction guidelines and (ii) ML-based risk calculator.
ACC/AHA model recommended statins for 46% of the pa-
tients while the ML-based risk calculator identified only
11.7% eligible for statin therapy.

Deep Learning-Based Cardiovascular Risk
Stratification

Deep learning is an extension of classical ANNs and efficient
ML techniques to analyze medical images. It consists of mul-
tiple convolutional layers that allow extraction of more data-
dependent patterns and thus, it helps in improving the accura-
cy of outcome prediction [124]. Convolutional neural network
(CNN) is a DL algorithm which has gained large attention
while analyzing medical images (Fig. 4). This is because
CNN has the ability to extract a large number of image-
based features compared to the handcrafted statistical features
[125, 126]. In CNN algorithm, an input image gets convolved
with a number of kernels which are responsible for the deck of
feature extraction (convolution operation is shown by a green
rectangle using kernel banks-magenta color). The features are
selected using polling operation (shown by an inverted green
triangle), where the meaningful features are selected. The co-
efficients of all these kernels are learned during the training
process of CNN. A basic architecture of DL using CNN is as
depicted in Fig. 4. There two challenges associated with the
basic CNN architecture. (i) The basic architecture may suffer
from overfitting due to the input data and thus, results in a
reduction in risk stratification accuracy. (ii) The basic archi-
tecture may have a limited number of convolution layers. A
larger number of convolutional layers extract more features
from the input images and thus, provide the power to the DL
system to separate the classes accurately. This, however, in-
creases the complexity of the system. The two challenges can
be solved (i) by including the dropout strategy in the basics
model and (ii) by adding multiple inception layers in the basic
model, respectively. The detailed version of DL using CNN
has been depicted in Fig. 5. The details of dropout and incep-
tion layers are out of the scope of this review. However, their
functionality has clearly been discussed in our previous paper
[49]. The main advantage in CNN is its ability to extract the
context-based features, and as a result does not require any
prior information, as in Supervised ML, before training the
system. Recently, Lekadir et al. [127] used CNN to automat-
ically characterize the plaque tissues from carotid ultrasound
images. A very recent set of studies by Biswas et al. [48, 88]
used CNN to measure the cIMT and LD, respectively, based
on CUS images. Although the focus of this review is on ultra-
sonography, it must be noted that DL techniques have alsoTa
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been tried to perform risk assessment using different imaging
modalities such as coronary CT angiography [128], optical
coherence tomography [25], and MRI [110].

Challenges in Machine Learning Design

There are some important key challenges while adapting ML
techniques in medical domains especially in CVD/stroke risk
assessment, including the following:

& Black-Box Nature of the ML Techniques

ML-based algorithms have proven their potential in pro-
viding robust and accurate solution almost in every medical
domain including CVD/stroke risk assessment. However, it is
somewhat challenging for clinical practitioners and physicians
to adapt ML techniques in their clinical practice. This may be
because of the so-called black box nature of ML algorithms
[129] and lack of external validations. Unlike traditional

statistical-derived methods which are based on discrete clini-
cal variables (e.g., age, blood pressure, diabetes), the internal
working of ML algorithms is not easy to interpret for most
physicians. This uncertainty about the logic of ML algorithm
may cause some practitioners to be more reluctant to adopt
this technology in clinical practice. Further, fewer studies have
been published in respectable peer-reviewed journals that
show (i) strong scientific validations, (ii) well-established gold
standards, (iii) variation analysis of the data sets, and (iv) real-
world ML clinical applications that can be adapted on daily
basis.

& Achieving Generalization of ML Models

It is of paramount importance that the ML model must be
generalizable [106]. This means the ML model designs must
be tested on almost every relevant dataset including longitu-
dinal follow-up datasets (or during prospective trials or retro-
spective data sets in which outcomes were recorded) with
potentially different features. This makes the model more ro-
bust and clinically reliable.

& Role of Transfer Learning

Since conducting multiple clinical trials with large
sample size to produce highly generalizable and reliable
results is not economically viable, a ML technique known
as transfer learning may be valuable. Furthermore, if an
ML model is trained on a particular dataset with a unique
set of features, then it also becomes practically impossible
to collect the similar kind of features in multicenter trials
due to its lengthy timely collection of data and soaring
cost. This puts a limit generalization of ML systems.
Transfer learning, therefore, provides the benefit of train-
ing on one set and application of transformed parameters
on a different set.

Convolutional layers & pooling Inception layers & pooling Classifier

Fig. 5 Advanced CNNmodel by incorporating convolution, pooling, inception, softmax layers (Courtesy of AtheroPoint™, Roseville, CA, USA USA
and Reproduced with permission from Elsevier)

Fig. 4 An architectural diagram for the deep learning-based
convolutional neural network algorithm (Courtesy of AtheroPoint™,
Roseville, CA, USA and Reproduced with permission from Springer
Nature)
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& Lack of Access to Data

The biggest and the most important challenge for most
ML-based data scientist and developers is the lack of access
to the well-established patient and population-based datasets,
such as MESA and ARIC. It is true that conducting such
multicenter clinical trials is expensive, but further attempts at
collaboration and improving access to such datasets are need-
ed to validate these ML-based designs.

Because of these key challenges, medical practitioners are
not ready to rely on ML techniques for clinical decision-
making [93, 130]. It is of utmost importance for both medical
practitioners and data scientists to come together and increase
the interpretability of computationally complex ML tech-
niques. In order to make the ML models generalizable, more
funding sources should come together and conduct longitudi-
nal multicenter clinical trials or observational studies that can
benefit both data scientists and system developers to make
more robust models.

Conclusion

In this review, we reported the changing trend for CVD/
stroke risk assessment, ranging from traditional statistical-
ly derived calculators to advanced ML-based risk assess-
ment systems. ML-based algorithms show better perfor-
mance compared to traditional methods. In this review,
we found that the supervised machine technique such as
SVM is the widely adapted ML-based algorithm for CVD
risk assessment followed by random forest and ANN.
Data-driven features are the most vital part of ML algo-
rithms. Most of the risk assessment techniques (i.e., tradi-
tional and ML-based) commonly incorporated traditional
CV features in their risk assessment model. For better risk
assessment, the feature engineering domain needs to be
explored more in the near future. Different image-based
risk factors can be incorporated to improve automated risk
assessment systems. Deep learning is the rapidly develop-
ing field for image analysis which extracts more robust
features from images. Image phenotypes extracted using
DL combined with CCVRFs can provide a better platform
for CVD/stroke assessment. Verification and validation of
the ML/DL systems is a crucial component for adopting
the system designs in routine clinical practice. Finally, with
the advancements in big data and artificial intelligence-
based paradigms, we are likely to see more sophisticated
CVD/stroke risk assessment tools in the future.
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Appendix: Performance Evaluation
Parameters

Sensitivity and specificity are computed using true positive
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN). TP indicates the count for which predicted class
labels matches with ground truth label for high-risk threshold
point, FN is defined as the number of times the predicted class
labels that are incorrectly classified as low-risk, FP is defined
as the number of times the predicted class labels that are in-
correctly classified as high-risk, and TN is defined as the
number of times predicted class labels that are correctly
matched with low-risk ground truth label. Sensitivity and
specificity are mathematically represented as, Sensitivity ¼

TP
TPþFNð Þ and Specificity ¼ TN

TNþFPð Þ. Furthermore, the accuracy

of risk stratification is mathematically represented as:
Accuracy ¼ TPþTN

TPþFNþFPþFNð Þ.
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